Important Attributes Selection Based on Rough Set for Speech Emotion Recognition

نویسندگان

  • Jian Zhou
  • Guoyin Wang
  • Yong Yang
چکیده

Speech emotion recognition is becoming more and more important in such computer application fields as health care, children education, etc. In order to improve the prediction performance or providing faster and more cost-effective recognition system, an attribute selection is often carried out beforehand to select the important attributes from the input attribute sets. However, it is time-consuming for traditional feature selection method used in speech emotion recognition to determine an optimum or suboptimum feature subset. Rough set theory offers an alternative, formal and methodology that can be employed to reduce the dimensionality of data. The purpose of this study is to investigate the effectiveness of Rough Set Theory in identifying important features in speech emotion recognition system. The experiments on CLDC emotion speech database clearly show this approach can reduce the calculation cost while retaining a suitable high recognition rate. DOI: 10.4018/978-1-60960-553-7.ch016

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improving of Feature Selection in Speech Emotion Recognition Based-on Hybrid Evolutionary Algorithms

One of the important issues in speech emotion recognizing is selecting of appropriate feature sets in order to improve the detection rate and classification accuracy. In last studies researchers tried to select the appropriate features for classification by using the selecting and reducing the space of features methods, such as the Fisher and PCA. In this research, a hybrid evolutionary algorit...

متن کامل

Self-Learning Facial Emotional Feature Selection Based on Rough Set Theory

Emotion recognition is very important for human-computer intelligent interaction. It is generally performed on facial or audio information by artificial neural network, fuzzy set, support vector machine, hidden Markov model, and so forth. Although some progress has already been made in emotion recognition, several unsolved issues still exist. For example, it is still an open problem which featu...

متن کامل

Speech Emotion Recognition Based on Power Normalized Cepstral Coefficients in Noisy Conditions

Automatic recognition of speech emotional states in noisy conditions has become an important research topic in the emotional speech recognition area, in recent years. This paper considers the recognition of emotional states via speech in real environments. For this task, we employ the power normalized cepstral coefficients (PNCC) in a speech emotion recognition system. We investigate its perfor...

متن کامل

Classification of emotional speech using spectral pattern features

Speech Emotion Recognition (SER) is a new and challenging research area with a wide range of applications in man-machine interactions. The aim of a SER system is to recognize human emotion by analyzing the acoustics of speech sound. In this study, we propose Spectral Pattern features (SPs) and Harmonic Energy features (HEs) for emotion recognition. These features extracted from the spectrogram ...

متن کامل

A Database for Automatic Persian Speech Emotion Recognition: Collection, Processing and Evaluation

Abstract   Recent developments in robotics automation have motivated researchers to improve the efficiency of interactive systems by making a natural man-machine interaction. Since speech is the most popular method of communication, recognizing human emotions from speech signal becomes a challenging research topic known as Speech Emotion Recognition (SER). In this study, we propose a Persian em...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IJCINI

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2009